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Abstract—Geometric model fitting has been widely ap-
plied in the electronic industry. However, it remains as a
challenging task when handling the data corrupted by a
large number of false matches (i.e., severe outliers) be-
tween two-view images. In this article, we propose a novel
motion consistency guided fitting method (MCF) to robustly
and efficiently estimate the parameters of model instances
in data involving severe outliers. Specifically, from input
data, we first generate a series of neighborhood sets, in
each of which gross outliers that are inconsistent in mo-
tions can be effectively filtered, according to motion con-
sistency among true matches (i.e., inliers). Then, we pro-
pose an effective sampling algorithm to sample minimal
subsets from the generated neighborhood sets. In this way,
the model hypotheses computed from the sampled minimal
subsets can cover all model instances with a high proba-
bility. Furthermore, by taking advantages of the generated
hypotheses and neighborhood sets, we propose a novel
model selection algorithm to estimate the number and the
parameters of model instances. For fitting evaluation, we
also build a new dataset, in which the images are collected
from a fundus camera. Experiments on a variety of elec-
tronic industrial applications show that the proposed MCF
achieves higher fitting accuracy at a much lower computa-
tional cost than several state-of-the-art fitting methods.

Index Terms—Geometric model fitting, guided sampling,
model selection, motion consistency, outliers.
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I. INTRODUCTION

ROBUST fitting of a geometric model among the data cor-
rupted by noise and outliers plays an extremely important

role in computer vision and robotics, due to the limitations of
data acquisition systems and preprocessing techniques in many
industry applications. Without robustness against outliers, the
estimated model parameters may be biased severely, leading
to the failure of many applications (such as robotics naviga-
tion [1], [2], remote sensing [3], [4], and motion segmenta-
tion [5], [6]) in the field of the electronic industry.

To illustrate the problem of robust geometric model fitting,
we can see the example in Fig. 1, where only a part of the data
(i.e., tentative feature matches between the two-view images)
are plotted for clarity. In this example, the goal of robust model
fitting is to estimate the parameters of a model instance (also
called a “structure,” which is an affine matrix) in the data, and
identify the inliers (with respect to the estimated affine matrix)
and outliers (caused by various uncertainty factors like cluttered
scenes and false matches). As a result, the estimated parameters
of the affine matrix can be used to align the two retinal images.

The problem of robust model fitting is generally solved in
a two-step manner, as done in the well-known model fitting
method (i.e., RANdom SAmpling Consensus, RANSAC [7]).
First, model hypotheses are generated by sampling minimal
subsets from input data. Here, a minimal subset represents the
minimal number of data required to generate a model hypothesis.
Second, based on the generated hypotheses, the parameters
of model instances are estimated by using a model selection
criterion. However, in many industrial applications, input data
are likely to be corrupted by a large number of outliers, and
they may also contain multiple structures, where the data of
one structure act as pseudo-outliers to the other structures. Note
that, gross outliers are the outliers that do not belong to any
structures. Therefore, it is critical to develop a highly robust
method for model fitting to estimate the parameters of multiple
model instances from input data, even in the presence of a large
number of outliers.

Based on the two key steps of robust model fitting, some fit-
ting methods have been proposed to improve fitting performance
from these two aspects: model hypothesis generation and model
selection. On one hand, many guided sampling algorithms (such
as [8] and [9]) have been proposed to increase the probability
of hitting an all-inlier minimal subset (whose elements are all
inliers of a model instance) to generate a good hypothesis.
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Fig. 1. Example of the neighborhood sets with motion consistency. For
the retinal image pair, the left one is a color fundus image, and the right
one is a fundus fluorescein angiography image. Here, a motion of each
match corresponds to a vector of each match. As can be seen, the true
matches are more likely to have consistent motion patterns, and they
show the similar motion magnitudes and directions with their neighbor-
ing matches. Moreover, the inliers tend to reside in a neighborhood set
with the larger number of matches. Hence, the neighborhood set of the
inlier (x1, y1) not only has a higher inlier ratio, but also contains more
matches than that of the outlier (x2, y2).

As a result, they can reduce the number of sampled minimal
subsets while covering all structures in data within a reasonable
time. However, these sampling algorithms may not be able to
efficiently generate a sufficient number of good hypotheses when
input data contain severe outliers.

On the other hand, some model selection algorithms (such
as [10], [11]) mainly focus on clustering based strategies to es-
timate the parameters of model instances especially in handling
multistructural data, i.e., they formulate the model selection
problem as a clustering problem. In this case, the parameters
of different model instances are estimated based on clustering
results, by which the problem of fitting multistructural data
becomes tractable in practice. However, these model selection
algorithms are less effective when dealing with data containing
a number of outliers and/or structures. This is because that some
existing clustering algorithms used for model selection are either
sensitive to outliers or hard to adaptively estimate the number
of clusters.

To overcome the above problems, in this article, we propose
a novel geometric model fitting method based on motion con-
sistency among input data, aiming at robustly and efficiently
handling multistructural data with severe outliers. The proposed
model fitting method mainly consists of a new guided sampling
algorithm based on motion information and a novel model
selection algorithm based on robust clustering analysis. More
specifically, we observe that the inliers of a model instance
usually tend to have consistent motion patterns, and they show
similar motions with their neighboring data. In contrast, gross
outliers tend to be randomly scattered across images. Based
on such observations, we generate a neighborhood set, whose
elements are consistent in motions, for each of input data by
leveraging an effective motion consistency constraint. An exam-
ple of the neighborhood sets with motion consistency is shown
in Fig. 1. After that, we propose a novel sampling algorithm,
which utilizes the data in the neighborhood sets with motion
consistency to derive the effective sampled minimal subsets, to
efficiently generate good model hypotheses for model selection.

Furthermore, to estimate the parameters of all model instances
from input data, we propose a novel model selection algorithm,
which analyzes the similarity values between input data and
weighting scores of input data for identifying different clusters.
The main contributions of this article are summarized as follows:

1) We introduce an effective constraint of motion consis-
tency to explore the neighboring relationship among fea-
ture matches for model fitting. We show that the motion
consistency information is a powerful clue that can be
used to effectively alleviate the influence of outliers and
improve the robustness of the proposed fitting method.

2) We present an effective guided sampling algorithm, which
exploits the motion consistency information to guide the
sampling of effective minimal subsets and to improve the
computational efficiency for model fitting.

3) We propose a novel model selection algorithm based
on robust clustering analysis to effectively estimate the
parameters of all model instances from input data in-
volving a large number of outliers, without requiring a
user-specified number of structures in advance.

In addition, we also build a new dataset suitable for electronic
industrial applications. Experimental results in various industrial
application scenarios show the significant advantages of the
proposed method over several other competing methods.

The rest of this article is organized as follows: In Section II,
we give an overview of the related work. In Section III, we
describe the proposed fitting method in detail. In Section IV, we
present the experimental results on both the electronic industrial
application scenarios and the images from publicly available
datasets. In Section V, concludes this article.

II. RELATED WORK

Many robust geometric model fitting methods have been
proposed during the past few decades [7], [12], [13] and compre-
hensive surveys can be found in [14] and [15]. According to the
key steps (i.e., model hypothesis generation and model selection)
of a model fitting method, we roughly divide the related work
into the following three categories.

Guided Sampling Based Methods in Model Fitting: The meth-
ods in this category aim to effectively generate model hypothe-
ses by using different sampling algorithms (e.g., [7]–[9], [16],
[17]) to improve fitting performance. Many guided sampling
algorithms have been proposed to improve the quality of the
generated model hypotheses based on various types of prior
information, such as matching scores [12], spatial coherence
information [9], and residual sorting information [13]. These
guided sampling algorithms can efficiently generate good model
hypotheses for simple data. However, for data with severe out-
liers, the prior information adopted in these sampling algorithms
become less useful for sampling. In contrast, we adopt the
motion consistency information in order to capture the reliable
neighborhood sets of data to guide the sampling process, and
thus we can obtain better sampling results for fitting. Unlike
some methods that formulate motion consistency by using com-
plex optimization strategies (such as optical flow estimation [8]),
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we introduce a simple yet effective formulation of the motion
consistency for model fitting.

Clustering Based Methods in Model Fitting: The methods in
this category aim to develop different model selection algorithms
(e.g., [10], [11], [18]–[22]) to improve fitting performance.
They formulate the model selection problem as a clustering
problem, and the related methods can be further divided into two
kinds, i.e., model hypothesis clustering based methods and data
clustering based methods. The methods of the first kind (e.g.,
AKSWH [20], MSHF [21]) cluster model hypotheses into differ-
ent classes, each of which indicates a model instance in data. The
methods of the second kind (e.g., T-Linkage [10], HOMF [11])
cluster data into different classes, and then estimate the pa-
rameters of different model instances from different classes. In
addition, the collective density clustering method [23], which
is specifically designed for motion segmentation, attempts to
detect model instances from the point trajectories under heavy
noise by finding density peaks of clusters as in [24]. Indeed, these
clustering based methods have achieved promising progress on
model selection, but with the increases of structure number and
outlier ratio in input data, estimating the parameters of multiple
model instances becomes problematic. In this article, we propose
a novel model selection algorithm, which can effectively exploit
the similarity values and weighting scores among input data for
clustering data, to robustly handle multistructural data with a
large number of outliers.

Alternating Optimization Based Methods in Model Fitting.
The methods in this category alternatingly and continuously
implement the two steps of model hypothesis generation and
model selection to improve fitting performance. The main ad-
vantage of the methods (such as [5], [25]) in this category is
that they can use the optimal results obtained by one step to
optimize the other step, and thus improve the final fitting results.
However, severe outliers in data may affect the effectiveness
in both steps in practice, leading to suboptimal solutions. In
contrast, the proposed method reduces the influence of outliers
by using the neighborhood sets with motion consistency, thus
improving the robustness in handling outliers.

III. PROPOSED METHOD

In this section, we first propose an effective guided sampling
algorithm to generate model hypotheses. Then, we propose a
novel model selection algorithm to estimate the parameters of
all model instances in data. Finally, we summarize the complete
proposed model fitting method.

A. Proposed Guided Sampling Algorithm

For two-view images of the same object, the neighboring fea-
ture matches usually have similar motions even in the presence
of large viewpoint changes, since their corresponding feature
points in one image often lie in an object or structure [19], [26].
Therefore, the magnitudes and directions of the motions of the
neighboring true matches (inliers) from a model instance tend
to vary within a limited range, while those of false matches
(outliers) tend to vary randomly across images. Based on this

observation, we introduce an effective motion consistency con-
straint, which is used to find the neighboring data with motion
consistency for each of input data, in order to accelerate the
process of sampling all-inlier minimal subsets.

1) Neighborhood Sets With Motion Consistency: Sup-
pose that we have obtained the input data S = {si}Ni=1 of N
feature matches, where si = (xi,yi) is a feature match (i.e., a
datum), and xi and yi are the pixel coordinates of two corre-
sponding feature points in two-view images, respectively. Here,
the motion vector of a feature match is denoted as vi = yi − xi.
We generate neighborhood sets from S based on a motion
consistency constraint in the following two steps.

In the first step, we aim to generate an initial neighborhood
set for each datum from S = {si}Ni=1 based on their motion
magnitudes. For an image pair, let a datum si = (xi,yi) ∈ S
be a reference datum. We first, respectively, search for two
K-nearest neighbors Ñxi

and Ñyi
for the two feature points xi

and yi of the reference datum si under the Euclidean distance
measure. If there is a datumsj , whose two corresponding feature
pointsxj andyj , respectively, fall into Ñxi

and Ñyi
, the lengths

of the motion vectors of the data sj and si are close to each
other. Consequently, the data sj and si can be regarded as
the neighboring data with similar motion magnitudes. We then
define the initial neighborhood set Ñsi

for si from S as

Ñsi
= {sj = (xj ,yj)|xj ∈ Ñxi

,yj ∈ Ñyi
, sj ∈ S} (1)

where |Ñxi
| = |Ñyi

| = K and 0 ≤ |Ñsi
| ≤ K.

In the second step, we aim to obtain the data with similar
motion directions from the generated Ñsi

in order to generate
the final neighborhood set for the reference datum si. For this
purpose, we use the cosine similarity measure to compute the
similarity value of the motion directions between the reference
datum si and one of its neighboring datum sj from Ñsi

as fol-
lows: c(vi,vj) =

<vi,vj>
‖vi‖×‖vj‖ , where 〈·, ·〉 and || · ||, respectively,

denote the inner product and the induced norm, and vi and vj ,
respectively, denote the motion vectors of the data si and sj . If
the computed similarity value is larger than a threshold λ, the
data si and sj from Ñsi

are regarded as the neighboring data
with similar motion directions. Based on the similar magnitudes
and directions of the motions of the data from Ñsi

, for the datum
si, its final neighborhood setNsi

, whose elements are consistent
in motions, is defined as

Nsi
= {sj |c (vi,vj) > λ, sj ∈ Ñsi

}. (2)

According to (1) and (2), we can generate a series of neigh-
borhood sets with motion consistency (i.e., {Nsi

}Ni=1) for all
the data from S . With the motion consistency constraint, the
gross outliers in each neighborhood set are filtered as many as
possible, while the inliers are reserved effectively. Thus, the
data in the same neighborhood set have a high probability of
belonging to the inliers of the same model instance. Therefore,
we aim at sampling the minimal subsets based on the neighbor-
hood sets with motion consistency for effectively and efficiently
generating model hypotheses.
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Algorithm 1: The Proposed Guided Sampling Algorithm.

1: Input: Data S = {si}Ni=1, the minimal subset size p,
parameters K and λ.

2: Output: The generated model hypothesis set
Θ = {θ�}L�=1.

3: Obtain N neighborhood sets {Nsi
}Ni=1 among S

based on the motion consistency constraint by using
(1) and (2).

4: Generate a set of L seed data Iseed = {s̃�}L�=1 ∈ S
(described in Section III-A2).

5: Initialization: Θ = ∅.
6: for � = 1 to L do
7: Select a seed datum s̃� from Iseed as the first datum

u1 of a sampled minimal subset P�.
8: Sample the datum that has the largest distance value

from s̃� in the neighborhood set Ns̃�
as the second

datum u2 of P�.
9: Randomly sample the other data [u3, . . . ,up] of P�

from the remaining data in the neighborhood set
Ns̃�

.
10: Compute a model hypothesis θ� using the sampled

minimal subset P� = [u1,u2, . . . ,up].
11: Θ = Θ ∪ {θ�}.
12: end for

2) Model Hypothesis Generation: In this section, we pro-
pose a novel guided sampling algorithm to sample minimal sub-
sets based on the neighborhood sets with motion consistency. For
sampling each of the minimal subsets, the proposed sampling
algorithm consists of the two steps: It chooses the first datum
(i.e., the seed datum) of a minimal subset by effectively selecting
a potential inlier from input data. Then, it chooses the remaining
data of the corresponding minimal subset in the neighborhood
set of the chosen seed datum.

Specifically, for the two-view based model fitting problem,
an inlier usually tends to be associated with more neighboring
data in a corresponding neighborhood set than an outlier (see
Fig. 1 for an example). Thus, we introduce a threshold ε to
select the data from input dataS , whose numbers of neighboring
data are larger than ε, as a potential inlier set Iseed ∈ S . We
set the threshold ε as the minimal subset size p (e.g., p = 8
data for fundamental matrix estimation), in order to obtain the
sufficient number of the data in a neighborhood set to yield
a minimal subset. To improve the effectiveness of a sampled
minimal subset, the seed datum of a minimal subset is chosen
from Iseed during the sampling process.

Then, to select the remaining data of the minimal subset, we
focus on the selection in the neighborhood set of the correspond-
ing seed datum. Thus, in a corresponding neighborhood set, we
select the datum that has the largest Euclidean distance value
from the seed datum as the second datum of the minimal subset.
This is because that a minimal subset with large spans will be
more effective for computing a model hypothesis [27]. At last,
the random sampling technique as done in RANSAC is used to
select the other data of the minimal subset from the remaining

data in the corresponding neighborhood set, due to its simplicity
and efficiency of implementation.

In the proposed sampling algorithm, we only sample the mini-
mal subsets from the neighborhood sets with motion consistency,
thus precluding a majority of gross outliers from being chosen.
Meanwhile, the number of the sampled minimal subsets can
be adaptively determined based on the number of the chosen
potential inliers corresponding to the seed data, whose number is
much smaller than that of the input data. Thus, we can effectively
obtain good model hypotheses with a few sampled minimal
subsets, by which the computational efficiency is significantly
improved. We present the novel guided sampling algorithm as
summarized in Algorithm 1.

B. Proposed Model Selection Algorithm

For model selection, some fitting methods introduce different
clustering techniques to cluster the data of the same model
instance, e.g., T-Linkage [10] uses an agglomerative clustering
technique and HOMF [11] uses a spectral clustering technique.
However, these methods are usually sensitive to severe outliers
and hard to adaptively estimate the number of model instances.
To relieve the above limitations, we propose a novel model
selection algorithm by using robust cluster analysis based on the
similarity between data and the weighting scores of the data. In
general, a cluster center corresponding to a true model instance
usually has a higher local weighting score than its neighbors,
and a relatively smaller similarity value between a datum (that
has a higher weighting score than the cluster center) and the
cluster center itself. Thus, we first calculate the similarity values
and local weighting scores of input data based on the generated
hypotheses and neighborhood sets. Then, we search for the
cluster centers and cluster the data by analyzing the weighting
scores and the similarity for model selection.

To calculate the similarity values between two data, we first
compute a residual value r(si,θ�) between a datum si from S
and a hypothesis θ� from the L generated model hypotheses
{θ�}L�=1. The computed residual value is then mapped to a
preference value using the preference function in [28] as

f
(i)
� =

{
exp(−r2(si,θ�)/δ

2), if r(si,θ�) < τ�
0 , otherwise

(3)

where τ� is the inlier scale estimated by IKOSE [20], and δ is a
normalization constant as in [28]. Consequently, the preference
vector f (i) between a datum si and the L model hypotheses
is written as f (i) = [f

(i)
1 , f

(i)
2 , . . . , f

(i)
L ]. An N × L preference

matrix F is then defined as F = [f (1),f (2), . . . ,f (N)]T. Based
on the tensor theory [29], we then multiply the matrix F with
its transpose FT to construct a similarity matrix H = F ∗ FT,
whose element h(si, sj) denotes the similarity value between
two data (i.e., two feature matches) si and sj from S .

To reduce the influence of gross outliers, the local weighting
score of a datum si ∈ S is measured based on the similarity
values between si and its neighboring data in a neighborhood
set as: ρ(si) =

1
T

∑
sj∈Nsi

h(si, sj), where Nsi
refers to a

neighborhood set (described in Section III-A1), and T is a
constant for the normalization of weighting scores. Since the
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Algorithm 2: The Proposed Motion Consistency Guided
Fitting (MCF) Method.

1: Input: Data S = {si}Ni=1, the minimal subset size p,
parameters K, λ, τ and η.

2: Output: The number and the parameters of model
instances.

3: Generate a model hypothesis set Θ by Algorithm 1.
4: Calculate a similarity matrix H = [h(si, sj)] of the

data S based on the generated hypothesis set Θ.
5: Estimate the weighting score ρ(s) for each datum s of

S .
6: Sort the data in S by the descending order of ρ to

obtain S∗ = {s∗}Ni=1 and define s∗1 as the initial
cluster center.

7: for i = 1 to N do
8: Obtain the nearest neighbor ŝ∗j of s∗i by using (4).
9: if h(s∗i , ŝ

∗
j) > τ then

10: Assign s∗i to the cluster that ŝ∗j belongs to.
11: else
12: Assign s∗i to be a new cluster center.
13: end if
14: end for
15: Refine the clusters to obtain the final clustering results

and distinguish inlier clusters from outlier ones
(Section III-B).

16: Estimate the number and the parameters of model
instances from input data based on the inlier clusters.

number of the data in a neighborhood set is not more than K,
the value of T is set to the value of K used in Section III-A1.

In order to effectively find the cluster centers, we first sort
the input data S = [s1, s2, . . . , sN ] by the descending order
of weighting scores. The sorted data are denoted as S∗ =
[s∗1, s

∗
2, . . . , s

∗
N ]. Then, we define the nearest neighbor datum ŝ∗j

of a datum s∗i ∈ S∗, by finding the maximum similarity value
between s∗i and any datum s∗j ∈ S∗ that has a higher weighting
score than s∗i , which is written as follows:

ŝ∗j =

⎧⎪⎨
⎪⎩

argmax
s∗
j∈S∗

h(s∗i , s
∗
j), ∃ s∗j , s.t. ρ(s

∗
j) > ρ(s∗i )

argmin
s∗
j∈S∗

h(s∗i , s
∗
j), otherwise.

(4)

After that, each datum from S∗ is assigned to a corresponding
cluster center based on its nearest neighbor datum and their
similarity values to obtain the clustering results. Specifically,
the initial cluster center is identified as the datum s∗1 ∈ S∗

with the maximum density value. In addition to the datum that
is the initial cluster center, the other data from S∗ are processed
effectively by the descending order of weighting scores. That
is, for a datum s∗i ∈ S∗, it is assigned to the cluster that its
nearest neighbor ŝ∗j belongs to, when their similarity value
h(s∗i , ŝ

∗
j) > τ . Otherwise, the datum s∗i is used as a new cluster

center during the clustering process. As a result, the number of
clusters can be determined automatically.

After the above clustering process, the cluster of the inliers
belonging to a model instance tends to have a larger size with
more data than the ones mainly consisting of outliers. Therefore,
we regard the data in the clusters, whose sizes are less than η, as
outliers. In contrast, the other clusters are regarded as the inlier
clusters, each of which corresponds to a true model instance
in data. Moreover, since a model instance may correspond to
multiple clusters, we follow the common process as in [10]
and [20] and refine the clusters by merging redundant clusters
based on the residual distribution of the data in the clusters.
In summary, the proposed model selection algorithm is able
to adaptively estimate the number of model instances and in
parallel estimate the parameters of each model instance by the
clustering and merging processes.

We note that both [21] and our method employ the mode-
seeking-based clustering strategy to handle the robust model
fitting problem. However, there are significant differences be-
tween them: 1) the authors in [21] seek modes from the gener-
ated model hypotheses in the parameter space to represent the
estimated model instances. However, such a way may lead to
suboptimal fitting results, especially when the generated model
hypotheses do not contain all model instances. In contrast, we
seek modes directly from input data to obtain data clustering
results, from which we effectively estimate the parameters of
all model instances. Thus, our method is able to alleviate the
influence of the generated insignificant model hypotheses on
the performance of model fitting, and it is more effective for the
estimation of multiple model instances. 2) In [21], the authors
derive inliers/outliers dichotomies corresponding to each of the
estimated model instances according to the user-specified inlier
noise scales. In contrast, we directly segment inliers and outliers
according to the data clustering results, by which the sensitiv-
ity to inlier noise scales for the segmentation of data can be
significantly alleviated. Therefore, our method can obtain more
accurate fitting and segmentation results in various industrial
applications for data with severe outliers.

C. Complete Method

With all the components developed in the previous sec-
tions, we summarize the complete proposed motion consistency
guided fitting (MCF) method in Algorithm 2. The proposed MCF
starts from generating a series of neighborhood sets from input
data by leveraging an effective motion consistency constraint.
We also propose a novel guided sampling algorithm, which
efficiently samples a small number of effective minimal subsets
from the obtained neighborhood sets, to generate high-quality
model hypotheses for model selection. Finally, by analyzing the
similarity values and weight scores of data, we propose a novel
model selection algorithm to effectively find inlier clusters, from
which we can estimate the parameters of all model instances in
data.

The computational complexity of our MCF is mainly gov-
erned by searching the K-nearest neighbors of each feature
point from input data S during the sampling process (i.e., Step
1 of Algorithm 1) and computing the similarity matrix of the
input data during the model selection process (i.e., Step 2 of
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Algorithm 2). In contrast, the other steps of MCF take much
less time than the above two steps. For these two steps, the
time complexity of searching the K-nearest neighbors for each
feature point in S and computing the similarity matrix of the
input data are approximately O((K +N) logN) and O(LN2),
respectively. Here, N is the number of feature matches, and L is
the number of the generated model hypotheses. Thus, the total
complexity of MCF is about O((K +N) logN) +O(LN2).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, to evaluate the performance of the proposed
fitting method (MCF), we first design two experiments for retinal
disease diagnosis and industrial defect inspection. Then, we
evaluate the proposed MCF on two publicly available datasets.
In addition, we also conduct experiments on various image pairs
for analyzing the components of the proposed MCF. In the
above experiments, the proposed MCF is evaluated with several
other state-of-the-art fitting methods (including T-Linkage [10],
RCMSA [9], RansaCov [18], MSHF [21], HOMF [11], and
HRMP [22]). In order to evaluate fitting results, following the
common practice in [18] and [22], the fitting error is computed
by measuring the ratio between the number of mislabeled data
and the total number of data.

A. Experiments on Fundus Retinal Images

Image registration is an important task in medical imaging
systems, where patients are examined and diagnosed by images.
In retina analysis, microscopic differences in fundus retinal
images are significant in making better medical decisions. The
purpose of retinal image registration is to assist ophthalmologists
to obtain more comprehensive details of the retinal structure for
disease diagnosis. Therefore, it is of great significance to obtain
accurate registration results from retinal images. Although many
intensity-based methods and feature-based methods have been
proposed recently, the registration of retinal images is still a
challenging task due to the complex nature of retinal images
(e.g., unhealthy regions) [30]. In this article, we mainly fo-
cus on feature-based methods, which first extract feature-based
matches between image pairs and then apply a geometric trans-
formation model for registration.

To evaluate the performance of the proposed MCF on retinal
images, we develop an experimental system for retinal disease
diagnosis, as shown in Fig. 2. The experimental system mainly
includes a Zeiss FF 450plus Fundus Camera for collecting
fundus retinal images, and a workstation with an Intel i7-7700
CPU @3.6GHz and 16GB RAM for running algorithms. An
example of the image registration result obtained by MCF on
a pair of multimodality retinal images is also shown in Fig. 3.
The pair of multimodality images are captured with the color
fundus photograph and the fluorescein angiography by using the
Zeiss fundus camera device [see Fig. 3(a)]. It is worth noting
that color fundus images mainly reveal the whole appearance
of the retinal surface [see Fig. 3(c)]. In contrast, fluorescein
angiography images mainly provide the information of blood
vessels [see Fig. 3(d)]. In the pair of multimodality retinal
images, we first extract features from each image to generate a set

Fig. 2. Experimental system for fundus retinal disease diagnosis.

Fig. 3. Example of image registration on a pair of multi-modality retinal
images collected from a Zeiss FF 450plus Fundus Camera.

of feature matches. Then, we apply the proposed MCF to identify
the correct matches for model estimation. The fitting result is
shown in Fig. 3(b). After that, we estimate the parameters of an
affine matrix from the identified correct matches (inliers) in order
to obtain the corresponding geometric transformation between
the image pair. Finally, by the robust estimation of the affine
matrix, we can obtain the accurate registration result, as shown
in Fig. 3(e). With accurate registration, the information gained
from the pair of multimodality retinal images can be used in a
complementary manner to provide additional insight for retinal
disease analysis [as shown in Fig. 3(f)].

To obtain quantitative results, we compare the proposed MCF
with the aforementioned six state-of-the-art fitting methods on
retinal images. Since there are few publicly available datasets for
model fitting on multimodality retinal images, we built a new
multi-modality retinal image (MMRI) dataset for evaluation.
The MMRI dataset consists of 15 pairs of retinal images that
involve a number of challenges, such as large textureless regions
and significant illumination variations. As a result, the obtained
feature matches between the image pairs contain a large number
of outliers. As retinal images are usually captured under different
conditions, the image pairs in the MMRI dataset are divided into
three categories, i.e., CategoryA containing five pairs of images
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TABLE I
QUANTITATIVE RESULTS ON THE RETINAL IMAGE PAIRS

FROM THE MMRI DATASET

The best results are boldfaced.

with partial overlaps, CategoryB containing five pairs of images
with different modalities, and Category C containing five pairs
of images with different modalities and partial overlaps.

We repeat each experiment 50 times on the image pairs from
the MMRI dataset for the seven competing methods, and show
the fitting results in Table I. As can be seen, MCF achieves
the lowest mean fitting errors in 13 out of 15 image pairs, and
it uses the lowest CPU time (in seconds) for each test data
among all the seven competing methods. MCF also achieves
the lowest average fitting error and the second lowest standard
variance of fitting errors for the overall results. This is because
that MCF takes advantage of the motion information among
feature matches to significantly reduce the influence of severe
outliers for robust model fitting, and thus it achieves better fitting
accuracy than the other six competing methods.

B. Experiments on Printed Circuit Board (PCB) Images

PCBs are commonly used in electronic devices in the indus-
trial field. Defect inspection is a critical part in the production
process of PCBs. Automatic optic inspection systems, in which
image registration plays an important role, are widely applied
in the defect inspection of PCBs due to their efficiency and
reliability [31]. However, electronic PCBs often include com-
plex scenes with repeating elements (see Fig. 4). As a result,
the obtained sets of feature matches between image pairs often
contain a large number of feature matches and could be corrupted
heavily by outliers. Therefore, it requires a fitting method to be
highly robust to outliers and efficient to estimate accurate model
parameters for image registration in defect inspection of PCBs.

TABLE II
QUANTITATIVE RESULTS ON THE ADELAIDERMF DATASET FOR

FUNDAMENTAL MATRIX ESTIMATION AND ON THE SNU DATASET FOR AFFINE
MATRIX ESTIMATION. THE BEST RESULTS ARE BOLDFACED

To obtain qualitative results, we apply the aforementioned
seven fitting methods on two representative image pairs of PCBs
(called PCBs _ A and PCBs _ B) for image registration. Some
qualitative results are shown in Fig. 4. Note that the number
of feature matches (and outlier ratios) on the image pairs of
PCBs _ A and PCBs _ B are 2514 (83.25%) and 2157 (14.60%),
respectively. For the PCBs _ A image pair, the proposed MCF
obtains the best fitting results, and it can correctly identify the
inliers in the test data. HRMP obtains the second best fitting
results, due to the fact that some false matches are incorrectly
identified as inliers (an example is shown in Fig. 4). From the
results, the proposed MCF can accurately estimate the param-
eters of an affine matrix and it precisely aligns the PCBs _ A
image pair with satisfactory registration (which are highlighted
with the purple rectangles in Fig. 4), compared to HRMP. The
registration results obtained by HRMP still includes distortions
and “ghosting” (which are highlighted with the red ellipses
in Fig. 4). For the other five methods, the registration results
obtained by HOMF are slightly better than those of T-Linkage,
RCMSA, RansaCov, and MSHF, but less accurate than those of
MCF. For the PCBs _ B image pair, the best and the second best
fitting results are, respectively, obtained by MCF and HRMP, and
there are no false matches (outliers) that are incorrectly identified
as inliers. However, the proposed MCF can detect more inliers
than HRMP, as shown in Fig. 4. Thus, the registration process
in the proposed MCF is more effective than that of HRMP. The
registration results obtained by the seven methods on the PCBs
_ B image pair are not shown, due to the space limit. In short,
the proposed MCF can robustly estimate the parameters of the
geometric model for image registration of PCBs and it is highly
robust to outliers.

C. Experiments on Two Publicly Available Datasets

We also compare the proposed MCF with the six state-of-the-
art methods mentioned above for the task of fundamental matrix
estimation on the AdelaideRMF dataset [13] and for the task of
affine matrix estimation on the SNU dataset [32].

We report the results on the AdelaideRMF and SNU datasets
in Table II, and we show some fitting results obtained by MCF
in Fig. 5. As we can see, the proposed MCF achieves the lowest
average fitting errors and the lowest standard deviations of fitting
errors on the two datasets among all the competing methods.
Moreover, MCF has significantly improved the computational
efficiency compared to the other methods. Specifically, the av-
erage CPU time used by MCF (i.e., 0.56/1.51s) is much less
than that used by the second fastest RCMSA (i.e., 1.22/3.38s)
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Fig. 4. Results obtained by the seven fitting methods on two image pairs (i.e., PCBs _ A and PCBs _ B). In the first row, we show the best and
second best fitting results, respectively, obtained by MCF and HRMP on the image pairs. For clarity, only 80 matches including inliers (red lines) and
outliers (yellow lines) are randomly selected for each case. In the second row, we only show the registration results obtained by the seven methods
on the PCBs _ A image pair, due to the space limit. The red ellipses highlight distortions or errors. The purple rectangles highlight satisfactory
registration.

Fig. 5. Some fitting results obtained by the proposed MCF. (a)–(c) and
(d)–(f), respectively, show the results on the image pairs from the Ade-
laideRMF dataset for fundamental matrix estimation and on the image
pairs from the SNU dataset for affine matrix estimation (only one of two
views is shown). The inliers of different model instances are marked in
different colors. The outliers are marked in the yellow color.

Fig. 6. Mean fitting errors obtained by the proposed MCF with different
parameter values on the four representative image pairs.

Fig. 7. Comparison results for MCF and its three variants on the
SNU dataset. (a) The overall average fitting errors obtained by the four
methods. (b) The number of all-inlier subsets for each structure obtained
by MCF and MCF-V2 on the Books image pair, respectively.

on the two datasets, respectively. The reason is that MCF only
generates a small number of model hypotheses with a high ratio
of good model hypotheses to cover all true model instances in
data, and it also benefits from the effectiveness of the proposed
model selection algorithm. T-Linkage, RansaCov, MSHF, and
HRMP are significantly slower than the proposed MCF on both
datasets. This is because that it is difficult for these methods to
sample all-inlier minimal subsets during the sampling processes
when the data contain severe outliers, and these methods need
to sample a large number of minimal subsets in order to hit
a true model instance. As a result, these methods spend much
more CPU time than the proposed MCF during the sampling
processes for model fitting. Compared to T-Linkage (which uses
an agglomerative clustering technique for model selection) and
HOMF (which uses a spectral clustering technique for model
selection), MCF uses the proposed model selection algorithm
based on robust cluster analysis, and it achieves great improve-
ments in fitting accuracy. The comparison results further show
the superiority of the proposed MCF over the other six methods
in both fitting accuracy and computational speed. It is worth
pointing out that only T-Linkage, RCMSA, MSHF, HRMP and
the proposed MCF can automatically estimate the number of
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(a) (b) (c) (d)

Fig. 8. Mean fitting errors and the mean CPU time obtained by the competing methods on two image pairs with different outlier ratios. (a) and (c)
show the quantitative comparison on the Breadcartoychips image pair. (b) and (d) show the quantitative comparison on the Minnies image pair.

model instances. In contrast, the remaining two methods (i.e.,
RansaCov and HOMF) require a user-specified model instance
number, which is not known in advance in many practical
industrial applications.

D. Analysis for the Proposed MCF

1) Parameter Analysis and Settings: There are four pa-
rameters used in the proposed MCF, i.e., K is for the generation
of the neighborhood sets with motion consistency, λ is for the
selection of the neighboring data with similar motion directions,
τ is the cut-off threshold for clustering, and η is the minimal
cluster size. We test different values of the parameters for
fundamental matrix estimation on the two image pairs (i.e., Cube
and Breadcartoychips) and for affine matrix estimation on the
other two image pairs (i.e., RetinaB3 and Books). We show the
experimental results obtained by MCF in Fig. 6.

As we can see, when the value ofK is set to be too small, MCF
obtains large fitting errors on some image pairs, mainly due to
the lack of sufficient data in a neighborhood set for sampling.
However, when the value of K is set to be too large, a generated
neighborhood set will include sufficient data but it also contains
many outliers for sampling. Overall, MCF can obtain low fitting
errors on all image pairs, when the value of K ranges from 30
to 40.

For the parameter λ, we can see that MCF achieves low fitting
errors on the four image pairs when the value of λ is within
0.2–0.4. In contrast, when its value is larger than 0.4, MCF may
filter out too many feature matches, including inliers during the
process of generating neighborhood sets. This situation will lead
to yielding the insufficient effective sampled minimal subsets for
model fitting.

For the cut-off threshold τ , we can see that if we set the value
of τ too large or too small, MCF obtains relatively high fitting
errors for most cases. The reason is that when τ is too large,
many inliers may be wrongly removed in the clustering process,
while when τ is too small, clusters may undesirably involve
many outliers, leading to bad fitting results.

Finally, for the minimum clustering size η, the fitting errors
remain relatively stable on all four image pairs when its value is
increased from 2 to 18, while the fitting errors become relatively
high when the value of η is larger than 18. The results show that
the proposed MCF can accurately distinguish the inlier clusters
from the outlier ones that consist of few data by using a proper
threshold. Therefore, based on the experimental results, we set

the default values of these parameters as K = 30, λ = 0.3, τ =
10, and η = 10 for the proposed method in all the experiments.

2) Ablation Study: Three variants are presented to analyze
the influence of different components of MCF. The three variants
of MCF are 1) MCF-V1: MCF without using the local weighting
scores in the proposed model selection algorithm. It means that
MCF-V1 measures the weighting score of each datum based on
the whole data set. 2) MCF-V2: MCF without using the proposed
sampling algorithm. MCF-V2 samples minimal subsets from the
whole dataset by random sampling. 3) MCF-V3: MCF without
using both of the abovementioned components. MCF-V3 im-
plements the steps of model selection and model hypothesis
generation without using the motion consistency constraint.

We evaluate the performance of MCF and its three variants
on the SNU dataset and report the quantitative results as shown
in Fig. 7(a). From the experimental results, we can see that
MCF-V1 that does not use the local weighting scores has an
increase in the average fitting error by 2.12%, while MCF-V2
that does not use the proposed sampling algorithm has an in-
crease in the average fitting error by 18.81%. Therefore, the
proposed sampling algorithm contributes more to improve the
fitting performance. To show the effectiveness of the proposed
guided sampling algorithm, we provide an example about the
number of the sampled all-inlier minimal subsets obtained by
MCF and MCF-V2 on the Books image pair, as shown in
Fig. 7(b). In addition, MCF-V3 that does not use the motion
consistency constraint has an increase in the average fitting error
by 21.05%. These comparison results show that the adopted
motion consistency constraint among data is the most crucial
information used in MCF and it plays an important role in
improving the performance of model fitting.

3) Influence of Different Gross Outlier Ratios: To show
the robustness of the proposed fitting method, we evaluate the
performance of the seven competing methods on multistructural
data with different ratios of gross outliers. We change the number
of gross outliers to each test dataset and fix the number of inliers
for experiments. We report the quantitative results on two image
pairs with different gross outlier ratios, as shown in Fig. 8.
From Fig. 8(a) and (b), we can see that MCF does not show
large fluctuations in the mean fitting errors and it still achieves
low mean fitting errors at high outlier ratios compared with the
other fitting methods. This is because that the proposed model
selection algorithm can effectively handle multistructural data
with severe outliers. From Fig. 8(c) and (d), we can see that
the CPU time used by MCF shows no significant changes when
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the outlier ratios are increased, and MCF is much faster than the
other competing methods, which can be mainly attributed to the
effectiveness and efficiency of the proposed guided sampling
algorithm. In summary, these experimental results show the
robustness of MCF with regard to different gross outlier ratios.

V. CONCLUSION

In this article, we proposed a robust and efficient MCF method
for geometric model fitting. In contrast to previous methods, the
proposed MCF can significantly reduce the influence of outliers
by leveraging the motion consistency among feature matches for
model fitting. Specifically, from input data, we first generated
a series of neighborhood sets, whose corresponding elements
were consistent in motions. Based on the obtained neighborhood
sets, we then proposed a novel sampling algorithm, which can
increase the probability of sampling all-inlier minimal subsets
to efficiently generate good model hypotheses. Moreover, by
robust clustering analysis, we proposed a novel model selection
algorithm, which can effectively estimate the number and the
parameters of model instances in data. Benefiting from both the
proposed sampling algorithm and the proposed model selection
algorithm, MCF was able to robustly deal with multistructural
data even in the presence of severe outliers. Extensive experi-
ments in various industrial application scenarios showed the su-
periority of the proposed MCF over several other state-of-the-art
model fitting methods.
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